【学术预告】Stability and bifurcation analysis of an HIV-1 infection model with a general incidence and CTL immune response
报告题目:Stability and bifurcation analysis of an HIV-1 infection model with a general incidence and CTL immune response
报 告 人:陈玉明 教授
报告时间:2021年10月30日(周六) 8:30—10:00
报告地点:腾讯会议 ID:613952676
报告摘要:In this talk, taking into account of eclipse, wepropose an HIV-1 infection model with a general incidence rate and CTL immune response. We first study the existence and local stability of equilibria, which is characterized by the basic infection reproduction numberR0and the basic immunity reproduction numberR1. The local stability analysis indicates the occurrence of transcritical bifurcations of equilibria. We confirm the bifurcations at the disease-free equilibrium and the infected immune-free equilibrium with transmission rate and the decay rate of CTLs as bifurcation parameters, respectively.Then we apply the approach of Lyapunov functions to establish the global stability of the equilibria, which is determined by the two basic reproduction numbers. These theoretical results are supported with numerical simulations. Moreover, we also identify thehigh sensitivity parameters by carrying out the sensitivity analysis of the two basic reproduction numbers to the model parameters.
报告人简介:陈玉明,加拿大罗瑞尔大学(Wilfrid Laurier University)数学系正教授、博士生导师,主要研究兴趣为动力系统和泛函微分方程理论及其在生物数学和神经网络中的应用。已在包括SIAM Journal on Mathematical Analysis, Transactions on the American Mathematical Society,Nonlinearity, Journal of Differential Equations, Physica D, Proceedings of the American Mathematical Society,Mathematical Biosciences, Neural Networks等国际著名刊物发表论文一百三十余篇,其成果被同行广泛引用,曾获安大略省科技与创新部早期研究者奖。主持5项加拿大国家自然科学与工程理事会(NSERC)科研基金项目,参与3项中国国家自然科学基金面上项目。
欢迎广大师生参加!