【学术预告】数学与统计学院学术预告三则

2024-10-01 10:25:12 

报告题目1:Sample Average Approximation for Conditional Stochastic Optimization with Dependent Data

报告人:孔令臣

报告时间:10月5日(周六)08:30开始

报告地点:数学楼315会议室

报告摘要:Conditional Stochastic Optimization (CSO) is a powerful modelling paradigm for optimization under uncertainty. The existing literature on CSO is mainly based on the independence assumption of data, which shows that the solution of CSO is asymptotically consistent and enjoys a finite sample guarantee. The independence assumption, however, does not typically hold in many important applications with dependence patterns, such as time series analysis, operational control, an dreinforcement learning. In this paper, we aim to fill this gap and consider a Sample Average Approximation (SAA) for CSO with dependent data. Leveraging covariance inequalities and independent block sampling technique, we provide theoretical guarantees of SAA for CSO with dependent data. In particular, we show that SAA for CSO retains asymptotic consistency and a finite sample guarantee under mild conditions. In addition, we establish the sample complexity O(d/ε 4)of SAA for CSO, which is shown to be of the same order as independent cases. Through experiments on several applications, we verify the theoretical results and demonstrate that dependence does not degrade the performance of the SAA approach in real data applications.

报告人简介:孔令臣,教授,博士生导师,北京交通大学数学与统计学院副院长,中国运筹学会数学规划分会理事长。主要从事对称锥互补问题和最优化、高维数据分析、统计优化与学习、医学成像等方面的研究,发表论文60余篇。主持国家自然科学基金面上项目4项和专项基金项目4项, 参与国家自然科学基金重点项目、重点研发项目以及973课题等。先后获山东省高等教育教学成果三等奖、中国运筹学会青年奖、教育部自然科学二等奖和北京市高等教育教学成果一等奖、二等奖。

报告题目2:二阶锥互补问题具有误差界性质的充分条件

报告人:周金川

报告时间:10月5日(周六)10:30开始

报告地点:数学楼315会议室

报告摘要:误差界性质利用残差函数来刻画点到解集的距离。它等价于集值映射的度量次正则,或者逆映射的平稳性。在算法的收敛性分析中扮演着重要的角色,同时可作为最优性条件的约束规范。我们利用切锥、方向法锥等变分分析工具,研究了二阶锥互补问题解集具有误差界性质的充分条件。

报告人简介:周金川,博导,山东理工大学教授,研究方向为最优化理论、算法及其在压缩感知、图像处理中的应用。中国运筹学会数学规划分会青年理事,山东省运筹学会副秘书长,山东省高等学校优秀青年创新团队“系统优化与控制”负责人。在锥规划、非光滑分析等方面取得一系列研究成果。主持(完成)国家自然科学基金3项、山东省自然科学基金2项;研究成果获山东省高校优秀科研成果奖二等奖1次;发表SCI论文50余篇,部分结果发表在Mathematical Programming, SIAM Journal on Optimization, Mathematics of Operations Research等优化领域重要期刊。

报告题目3:Global optimization methods for the minimax linear fractional programming problems

报告人:焦红伟

报告时间:10月5日(周六)15:30开始

报告地点:数学楼315会议室

报告摘要:In this report, we aim to find the global optimal solution of the min-max linear fractional programming problems (MMLFPP), whichhave numerous applications in many fields of economy and engineering. First of all, by constructing the adaptive branching method and the second-order cone relaxation bounding technique, we propose an adaptive branch-and-bound algorithm to tackle the MMLFPP. Secondly, based on the Charnes-Cooper transformation technique and the outer space branch-and-bound scheme, we propose an outer space algorithm for the MMLFPP. We prove the global convergence of these algorithms and estimate maximum number of iterations in the worst case. Finally, numerical results verify the efficiency of these algorithms.

报告人简介:焦红伟,博士,教授,河南科技学院数学学院副院长,河南省青年骨干教师,河南省教育厅学术技术带头人,中国运筹学会数学规划分会理事,中国运筹学会算法软件与应用分会理事,河南省运筹学会常务理事兼青年工作委员会主任。研究方向:最优化理论、算法及应用。近年来,主持国家自然科学基金项目面上项目2项;主持中国博士后科学基金、河南省自然科学基金、河南省重点研发与科技推广等省部级科研项目6项;在《European Journal of Operational Research》、《Journal of Optimization Theory and Applications》、《Journal of Global Optimization》等国内外学术期刊上发表论文80余篇,其中被SCI收录60余篇;在科学出版社出版《全局优化问题的分支定界方法》学术专著1部;获河南省自然科学二等奖1项。

编辑:李春燕 / 初审:李春燕 复审:韩志宏 终核:丁少锋
相关文章
读取内容中,请等待...