【学术预告】Existence of at most two limit cycles for some non-autonomous differential equations
报告题目:Existence of at most two limit cycles for some non-autonomousdifferential equations
报 告 人:赵育林 教授
报告时间:2022年5月18日(周三) 16:30—18:30
报告地点:腾讯会议 ID:142 671 278
报告摘要:It is know that the non-autonomous differentialequations dx/dt=a(t)+b(t)|x|, wherea(t) andb(t) are 1-periodic maps of class C1, have no upperbound for their number of limit cycles (isolated solutionssatisfying x(0)=x(1)). We prove that if eithera(t) orb(t)does not change sign, then their maximum number of limit cycles istwo, taking into account their multiplicities, and that this upperbound is sharp. We also study all possible configurations of limitcycles. Our result is similar to other ones known for Abel typeperiodic differential equations although the proofs are quitedifferent.
报告人简介:赵育林,中山大学数学学院(珠海)教授、博士生导师,广东省本科高校教学指导委员会数学专业委会委员,广东省数学会常务理事,2007入选教育部新世纪优秀人才支持计划。曾先后访问意大利佛罗伦萨大学、加拿大Universite des Montreal、York University,以色列Weizmann Institute of Science、巴西圣保罗大学、美国普渡大学、法国里尔大学、西班牙Universitat Autonoma de Barcelona等高校。主要从事常微分方程定性理论和分支理论的研究工作,包括弱化的Hilbert十六问题、周期单调性、代数极限环、高阶极限环分支问题等,已在J. Differential Equation、Nonlinearity、中国科学(英文版)等期刊上发表多篇学术论文,主持国家自然科学基金项目5项。
欢迎广大师生参加!